Inositol 1,4,5- Trisphosphate Receptor Function in Drosophila Insulin Producing Cells

نویسندگان

  • Neha Agrawal
  • Nisha Padmanabhan
  • Gaiti Hasan
چکیده

The Inositol 1,4,5- trisphosphate receptor (InsP(3)R) is an intracellular ligand gated channel that releases calcium from intracellular stores in response to extracellular signals. To identify and understand physiological processes and behavior that depends on the InsP(3) signaling pathway at a systemic level, we are studying Drosophila mutants for the InsP(3)R (itpr) gene. Here, we show that growth defects precede larval lethality and both are a consequence of the inability to feed normally. Moreover, restoring InsP(3)R function in insulin producing cells (IPCs) in the larval brain rescues the feeding deficit, growth and lethality in the itpr mutants to a significant extent. We have previously demonstrated a critical requirement for InsP(3)R activity in neuronal cells, specifically in aminergic interneurons, for larval viability. Processes from the IPCs and aminergic domain are closely apposed in the third instar larval brain with no visible cellular overlap. Ubiquitous depletion of itpr by dsRNA results in feeding deficits leading to larval lethality similar to the itpr mutant phenotype. However, when itpr is depleted specifically in IPCs or aminergic neurons, the larvae are viable. These data support a model where InsP(3)R activity in non-overlapping neuronal domains independently rescues larval itpr phenotypes by non-cell autonomous mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inositol 1,4,5-trisphosphate receptor and dSTIM function in Drosophila insulin-producing neurons regulates systemic intracellular calcium homeostasis and flight.

Calcium (Ca(2+)) signaling is known to regulate the development, maintenance and modulation of activity in neuronal circuits that underlie organismal behavior. In Drosophila, intracellular Ca(2+) signaling by the inositol 1,4,5-trisphosphate receptor and the store-operated channel (dOrai) regulates the formation and function of neuronal circuits that control flight. Here, we show that restoring...

متن کامل

IP3R-mediated Ca2+ release regulates protein metabolism in Drosophila neuroendocrine cells: implications for development under nutrient stress

Successful completion of animal development is fundamentally reliant on nutritional cues. Surviving periods of nutritional insufficiency requires adaptations that are coordinated, in part, by neural circuits. As neuropeptides secreted by neuroendocrine (NE) cells modulate neural circuits, we investigated NE cell function during development under nutrient stress. Starved Drosophila larvae exhibi...

متن کامل

Patterns of Gene Expression in Drosophila InsP3 Receptor Mutant Larvae Reveal a Role for InsP3 Signaling in Carbohydrate and Energy Metabolism

BACKGROUND The Inositol 1,4,5-trisphosphate receptor (InsP(3)R) is an InsP(3) gated intracellular Ca(2+)-release channel. Characterization of Drosophila mutants for the InsP(3)R has demonstrated that InsP(3)-mediated Ca(2+) release is required in Drosophila larvae for growth and viability. METHODOLOGY/PRINCIPAL FINDINGS To understand the molecular basis of these growth defects a genome wide m...

متن کامل

Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells.

The second messenger function of inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) was investigated in carbamylcholine-stimulated RINm5F cells by analysis of the early changes in inositol phosphates, cytosolic free Ca2+ concentration ([Ca2+]i), and insulin secretion. After a lag of 2 s, [Ca2+]i rose to a peak at 13 +/- 2 s, a response which was due mainly to mobilization from intracellular stores sin...

متن کامل

Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae.

Signaling by the second messenger inositol 1,4,5-trisphosphate is thought to affect several developmental and physiological processes. Mutants in the inositol 1,4,5-trisphosphate receptor (itpr) gene of Drosophila exhibit delays in molting while stronger alleles are also larval lethal. In a freshly generated set of EMS alleles for the itpr locus we have sequenced and identified single point mut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009